152 research outputs found

    γδ T lymphocytes from cystic fibrosis patients and healthy donors are high TNF-α and IFN-γ-producers in response to Pseudomonas aeruginosa

    Get PDF
    BACKGROUND: γδ T cells have an important immunoregulatory and effector function through cytokine release. They are involved in the responses to Gram-negative bacterium and in protection of lung epithelium integrity. On the other hand, they have been implicated in airway inflammation. METHODS: The aim of the present work was to study intracytoplasmic IL-2, IL-4, IFN-γ and TNF-α production by γδ and αβ T lymphocytes from cystic fibrosis patients and healthy donors in response to Pseudomonas aeruginosa (PA). Flow cytometric detection was performed after peripheral blood mononuclear cells (PBMC) culture with a cytosolic extract from PA and restimulation with phorbol ester plus ionomycine. Proliferative responses, activation markers and receptor usage of γδ T cells were also evaluated. RESULTS: The highest production of cytokine was of TNF-α and IFN-γ, γδ being better producers than αβ. No differences were found between patients and controls. The Vγ9δ2 subset of γδ T cells was preferentially expanded. CD25 and CD45RO expression by the αβ T subset and PBMC proliferative response to PA were defective in cystic fibrosis lymphocytes. CONCLUSION: Our results support the hypothesis that γδ T lymphocytes play an important role in the immune response to PA and in the chronic inflammatory lung reaction in cystic fibrosis patients. They do not confirm the involvement of a supressed Th1 cytokine response in the pathogenesis of this disease

    Complex life forms may arise from electrical processes

    Get PDF
    There is still not an appealing and testable model to explain how single-celled organisms, usually following fusion of male and female gametes, proceed to grow and evolve into multi-cellular, complexly differentiated systems, a particular species following virtually an invariant and unique growth pattern. An intrinsic electrical oscillator, resembling the cardiac pacemaker, may explain the process. Highly auto-correlated, it could live independently of ordinary thermodynamic processes which mandate increasing disorder, and could coordinate growth and differentiation of organ anlage

    Small but crucial : the novel small heat shock protein Hsp21 mediates stress adaptation and virulence in Candida albicans

    Get PDF
    Peer reviewedPublisher PD

    A review of elliptical and disc galaxy structure, and modern scaling laws

    Full text link
    A century ago, in 1911 and 1913, Plummer and then Reynolds introduced their models to describe the radial distribution of stars in `nebulae'. This article reviews the progress since then, providing both an historical perspective and a contemporary review of the stellar structure of bulges, discs and elliptical galaxies. The quantification of galaxy nuclei, such as central mass deficits and excess nuclear light, plus the structure of dark matter halos and cD galaxy envelopes, are discussed. Issues pertaining to spiral galaxies including dust, bulge-to-disc ratios, bulgeless galaxies, bars and the identification of pseudobulges are also reviewed. An array of modern scaling relations involving sizes, luminosities, surface brightnesses and stellar concentrations are presented, many of which are shown to be curved. These 'redshift zero' relations not only quantify the behavior and nature of galaxies in the Universe today, but are the modern benchmark for evolutionary studies of galaxies, whether based on observations, N-body-simulations or semi-analytical modelling. For example, it is shown that some of the recently discovered compact elliptical galaxies at 1.5 < z < 2.5 may be the bulges of modern disc galaxies.Comment: Condensed version (due to Contract) of an invited review article to appear in "Planets, Stars and Stellar Systems"(www.springer.com/astronomy/book/978-90-481-8818-5). 500+ references incl. many somewhat forgotten, pioneer papers. Original submission to Springer: 07-June-201

    On the genetic involvement of apoptosis-related genes in Crohn's disease as revealed by an extended association screen using 245 markers: no evidence for new predisposing factors

    Get PDF
    Crohn's disease (CD) presents as an inflammatory barrier disease with characteristic destructive processes in the intestinal wall. Although the pathomechanisms of CD are still not exactly understood, there is evidence that, in addition to e.g. bacterial colonisation, genetic predisposition contributes to the development of CD. In order to search for predisposing genetic factors we scrutinised 245 microsatellite markers in a population-based linkage mapping study. These microsatellites cover gene loci the encoded protein of which take part in the regulation of apoptosis and (innate) immune processes. Respective loci contribute to the activation/suppression of apoptosis, are involved in signal transduction and cell cycle regulators or they belong to the tumor necrosis factor superfamily, caspase related genes or the BCL2 family. Furthermore, several cytokines as well as chemokines were included. The approach is based on three steps: analyzing pooled DNAs of patients and controls, verification of significantly differing microsatellite markers by genotyping individual DNA samples and, finally, additional reinvestigation of the respective gene in the region covered by the associated microsatellite by analysing single-nucleotide polymorphisms (SNPs). Using this step-wise process we were unable to demonstrate evidence for genetic predisposition of the chosen apoptosis- and immunity-related genes with respect to susceptibility for CD

    Dietary phenethylisothiocyanate attenuates bowel inflammation in mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phenethylisothiocyanate (PEITC) is produced by Brassica food plants. PEO is a <b>P</b>EITC <b>E</b>ssential <b>O</b>il containing >95% natural PEITC. PEITC is known to produce various health benefits but its effect in alleviation of ulcerative colitis signs is unknown.</p> <p>Results</p> <p>In two efficacy studies (acute and chronic) oral administration of PEO was effective at remitting acute and chronic signs of ulcerative colitis (UC) in mice. Disease activity, histology and biochemical characteristics were measured in the treated animals and were compared with appropriate controls. PEO treatment significantly improved body weights and stool consistency as well as decreased intestinal bleeding. PEO treatment also reduced mucosal inflammation, depletion of goblet cells and infiltration of inflammatory cells. Attenuation of proinflammatory interleukin1β production was observed in the colons of PEO-treated animals. Expression analyses were also carried out for immune function related genes, transcription factors and cytokines in lipopolysaccharide-activated mouse macrophage cells. PEO likely affects an intricate network of immune signaling genes including a novel concentration dependent reduction of total cellular Signal Transducer and Activator of Transcription 1 (STAT1) as well as nuclear phosphorylated-STAT1 (activated form of STAT1). A PEO-concentration dependent decrease of mRNA of C-X-C motif ligand 10 (a STAT1 responsive chemokine) and Interleukin 6 were also observed.</p> <p>Conclusions</p> <p>PEO might be a promising candidate to develop as a treatment for ulcerative colitis patients. The disease attenuation by PEO is likely associated with suppression of activation of STAT1 transcription and inhibition of pro-inflammatory cytokines.</p

    Diffusion of MMPs on the Surface of Collagen Fibrils: The Mobile Cell Surface – Collagen Substratum Interface

    Get PDF
    Remodeling of the extracellular matrix catalyzed by MMPs is central to morphogenetic phenomena during development and wound healing as well as in numerous pathologic conditions such as fibrosis and cancer. We have previously demonstrated that secreted MMP-2 is tethered to the cell surface and activated by MT1-MMP/TIMP-2-dependent mechanism. The resulting cell-surface collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 can initiate (MT1-MMP) and complete (MMP-2) degradation of an underlying collagen fibril. The following question remained: What is the mechanism of substrate recognition involving the two structures of relatively restricted mobility, the cell surface enzymatic complex and a collagen fibril embedded in the ECM? Here we demonstrate that all the components of the complex are capable of processive movement on a surface of the collagen fibril. The mechanism of MT1-MMP movement is a biased diffusion with the bias component dependent on the proteolysis of its substrate, not adenosine triphosphate (ATP) hydrolysis. It is similar to that of the MMP-1 Brownian ratchet we described earlier. In addition, both MMP-2 and MMP-9 as well as their respective complexes with TIMP-1 and -2 are capable of Brownian diffusion on the surface of native collagen fibrils without noticeable dissociation while the dimerization of MMP-9 renders the enzyme immobile. Most instructive is the finding that the inactivation of the enzymatic activity of MT1-MMP has a detectable negative effect on the cell force developed in miniaturized 3D tissue constructs. We propose that the collagenolytic complex (MT1-MMP)2/TIMP-2/MMP-2 represents a Mobile Cell Surface – Collagen Substratum Interface. The biological implications of MT1-MMP acting as a molecular ratchet tethered to the cell surface in complex with MMP-2 suggest a new mechanism for the role of spatially regulated peri-cellular proteolysis in cell-matrix interactions

    Black tea extract prevents lipopolysaccharide-induced NF-κB signaling and attenuates dextran sulfate sodium-induced experimental colitis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Black tea has been shown to elicit anti-oxidant, anti-carcinogenic, anti-inflammatory and anti-mutagenic properties. In this study, we investigated the impact of black tea extract (BTE) on lipopolysaccharide (LPS)-induced NF-κB signaling in bone marrow derived-macrophages (BMM) and determined the therapeutic efficacy of this extract on colon inflammation.</p> <p>Methods</p> <p>The effect of BTE on LPS-induced NF-κB signaling and pro-inflammatory gene expression was evaluated by RT-PCR, Western blotting, immunofluorescence and electrophoretic mobility shift assay (EMSA). The <it>in vivo </it>efficacy of BTE was assessed in mice with 3% dextran sulfate sodium (DSS)-induced colitis. The severity of colitis was measured by weight loss, colon length and histologic scores.</p> <p>Results</p> <p>LPS-induced IL-12p40, IL-23p19, IL-6 and IL-1β mRNA expressions were inhibited by BTE. LPS-induced IκBα phosphorylation/degradation and nuclear translocation of NF-κB/p65 were blocked by BTE. BTE treatment blocked LPS-induced DNA-binding activity of NF-κB. BTE-fed, DSS-exposed mice showed the less weight loss, longer colon length and lower histologic score compared to control diet-fed, DSS-exposed mice. DSS-induced IκBα phosphorylation/degradation and phosphorylation of NF-κB/p65 were blocked by BTE. An increase of cleaved caspase-3 and poly (ADP-ribose) polymerase (PARP) in DSS-exposed mice was blocked by BTE.</p> <p>Conclusions</p> <p>These results indicate that BTE attenuates colon inflammation through the blockage of NF-κB signaling and apoptosis in DSS-induced experimental colitis model.</p

    Timed sequential chemotherapy with concomitant Granulocyte Colony-Stimulating Factor for high-risk acute myelogenous leukemia: a single arm clinical trial

    Get PDF
    BACKGROUND: The timed-sequential chemotherapy regimen consisting of etoposide, mitoxantrone and cytarabine (EMA) is an effective therapy for relapsed or refractory acute myelogenous leukemia (AML). We postulated that granulocyte colony-stimulating factor (G-CSF) might enhance the cytotoxicity of EMA by increasing the proportion of leukemic blasts in S-phase. We added G-CSF to EMA (EMA-G) for therapy of advanced high-risk AML patients. METHODS: High-risk AML was defined as refractory, relapsed or secondary to either an antecedent hematologic disorder or exposure to cytotoxic agents. The patients were treated with one course of EMA-G consisting of mitoxantrone and cytarabine on days 1–3, and etoposide and cytarabine on days 8–10. G-CSF was started on day 4 and continued until absolute neutrophil count recovered. RESULTS: Thirty patients were enrolled. The median age was 51 years (range, 25–75). Seventeen (61%) patients had unfavorable cytogenetic karyotypes. Twenty (69%) patients had secondary AML. Ten (34%) had relapsed disease. Four (14%) had refractory AML. Three (10%) patients died from febrile neutropenia and sepsis. Major non-hematologic toxicity included hyperbilirubimenia, renal insufficiency, mucositis, diarrhea, nausea and vomiting, skin rash. A complete remission was achieved in 13 (46%) patients. Median overall survival was 9 months (range, 0.5–66). Median relapse-free survival (RFS) for those who had a CR was 3 months (range, 0.5–63) with RFS censored at the time of allogeneic bone marrow transplantation or peripheral stem cell transplantation for 6 of the patients. CONCLUSIONS: EMA-G is a safe and efficacious option for induction chemotherapy in advanced, high-risk AML patients. The activity of EMA may be increased if applied in patients with less advanced disease
    corecore